Fourth International Conference on Autonomic and Autonomous Systems

A Survey of Context Adaptation
in Autonomic Computing

Cornel Klein, Reiner Schmid
Siemens AG — Corporate Research & Technologies

Christian Leuxner, Wassiou Sitou, Bernd Spanfelner
Technische Universitdt Miinchen, Department of Informatics

0-7695-3093-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAS.2008.23

Otto-Hahn-Ring 6, 81730 Munich, Germany
Email: {cornel.klein|reiner.schmid} @siemens.com

Abstract—Autonomic Computing (AC) is an emerging
paradigm aiming at simplifying the administration of complex
computer systems. Efforts required to deploy and maintain
complex systems are usually high. Autonomic Computing may
help to reduce these efforts by allowing administrators to define
abstract policies and then enable systems to configure, optimize
and maintain themselves according to the specified policies.
Context adaptation can be regarded as an enabling technology
for future applications in the field of Autonomic Computing. In
this paper we present a survey of past and future secrets of this
enabling technology in Autonomic Computing.

Keywords: context adaptation, autonomic computing, self-
healing, self-organization, self-optimization, self-protection.

I. INTRODUCTION

Autonomic Computing aims at simplifying the adminis-
tration of complex computer systems. The four principal
characteristics of AC are self-healing, self-organization, self-
optimization and self-protection. These four attributes are
often referred to as the four self-X paradigms of AC. Accord-
ing to these paradigms, system administrators merely specify
high level policies, which determine how the system may
adjust its behavior at runtime in order to guarantee specified
requirements. Administrators are consequently relieved from
dealing with numerous details of the system. While this goal
is absolutely desirable still many questions remain open [1]
when considering AC Systems.

We consider most AC aspects to be closely related to context
adaptation. Context adaptation is a system’s capability of
gathering information about the domain it shares an interface
with, evaluating this information and changing its observable
behavior according to the current situation [2]-[4]. A high
level policy specified to enable the system’s adjustment also
can be regarded as context — as well as any other aspect
of the system’s environment. The individual capabilities of
autonomic systems (i.e. self-healing, self-organization, self-
optimization and self-protection) require the system to infer
from the current situation as well as the policy, and to trigger
an adequate measure. Therefore context adaptation is probably
what AC systems basically do.

To promote AC we argue for using approved methods
and techniques from the context adaptation domain in order
to enrich the development of autonomic applications. In the
reminder of this paper we take a look at the pervasion of
context adaptation in AC by discussing specific requirements

106

Boltzmannstr. 3, 85748 Garching, Germany
Email: {leuxner|sitou|spanfeln} @in.tum.de

to AC applications. Afterwards we present the results of our in-
vestigations in evaluating architectural frameworks appropriate
for the AC domain. Thereafter some future considerations re-
garding dynamic quality of service to enhance AC applications
are presented and illustrated by means of a hospital scenario.
To enable a better understanding of our investigations, we
narrow these considerations down to the self-healing attribute,
although the major part of the results may also apply to the
other self-X attributes.

II. RUNNING EXAMPLE

In the following, we make use of a scenario from a hos-
pital setting. In this scenario, a network management system
manages the following video services:

« Remote Expert: a physician is hooked up by video during

a surgery to assist in difficult tasks.

o Local Expert: a local physician is requested by another
hospital to be hooked up to a surgery.

o Video Security: several cameras record sensitive parts of
the hospital. The images are shown to a guard via monitor
and in addition are recorded to a recording system in the
central of the security service outside the hospital.

o IPTV: patients are provided with internet-TV and further
movies from a movie server.

The four services are connected to a broadband network.
The network is fast enough to enable parallel execution
of all these services with high quality. Within the scenario
suddenly a failure in a central optical network component
occurs, resulting in a reduced network bandwidth provided
by the backup system (SDSL network). Although the services
are reasonably prioritized, it may be necessary to run some
of them in parallel — even if this can not be accomplished
with the available network bandwidth. In such cases the AC
subsystem tries to dynamically prioritize over all services
currently demanding network bandwidth, thereby allocating
the remaining bandwidth appropriately to at least a subset of
the currently active network services.

III. SPECIFIC REQUIREMENTS FOR AUTONOMIC
COMPUTING

Like in any other application domain, Autonomic Com-
puting applications require some common properties apart
from the generic self-X attributes. These properties are often

IEEE
computer
psoue

ty

interrelated and contribute in their combination to a proper
achievement of the AC paradigms. In the following we
summarize and discuss these properties, denoted as specific
requirements for AC.

Adaptability

The core concept behind adaptability is the general ability to
change a system’s observable behavior, structure or realization
[3], [5]. This requirement is amplified by automatic adaptation.
Automatic adaptability enables a system to decide about an
adaptation by ifself — in contrast to an ordinary adaptation,
which in turn is decided and triggered by the system’s envi-
ronment (e.g. a user or administrator). Adaptation may affect
the change of some functionality, algorithm or parameters as
well as the total system structure or any other aspect of the
system. If an adaptation comprise the change of the complete
system model, including the the model that actually decides on
the adaptation and deploys the decisions, this system is called
a total reconfigurable system. In case a change of behavior
can be expressed by exchanging some functional entities, the
system is simply called reconfigurable. Automatic adaptation
requires a model of the system’s environment. This model
is often referred to as context. Thus, automatic adaptation is
often called context adaptation. We use adaptation and context
adaptation synonymously for convenience.

In the hospital scenario from section II, the context adapta-
tion inter alia comprises the exchange of broadband for SDSL
network and vice versa. In addition, management functional-
ities for managing the prioritization, QoS and (de-)activation
of the video services are needed.

Awareness

Awareness is closely related to adaptation and context, as it
is a prerequisite for automatic adaptation. It has two aspects:
self-awareness enabling a system to observe its own system
model, state, etc. and awareness of the environment. As stated
above, the model of the system’s environment is often called
context [5] [6]. To be more precise, we denote context as the
sufficiently exact characterization of the situations of a system
by means of perceivable information that is relevant for the
adaptation of the system [3]. In principle any (measurable)
characteristic of the system or its environment could be
considered for adaptation decisions. A systematic to model a
system’s context is proposed in [4]. The system in our running
example is however only aware of the available network
bandwidth and the requested services.

Monitoring

Since monitoring is often regarded as a prerequisite for error
discovery and handling, it constitutes a subset of awareness [7]
[8]. The peculiarities of monitoring are not discussed within
this document. However the notion of monitoring is relevant
for this discussion, since it is closely related to the notion of
context. Context embraces the system state, its environment,
and any information relevant for the adaptation. Consequently,
it is also a matter of context, which information for instance

indicates an erroneous system state and hence characterizes
a situation in which a certain adaptation is necessary. In this
case, adaptation can be compared to error handling, as it trans-
fers the system from an erroneous (unwanted) system state to
a well-defined (wanted) system state. The monitored context
within the running example comprises the network availability,
its bandwidth and the services’ requests for bandwidth together
with their priority.

Dynamicity

Dynamicity embraces a system’s ability to change during
runtime. In contrast to adaptability this only constitutes the
technical facility of change. While adaptability refers to the
conceptual change of certain system aspects, which does
not necessarily imply the change of components or services,
dynamicity is about the technical ability to remove, add or
exchange services and components. Once more, there is a
close but not dependable relation between both dynamicity and
adaptation. Dynamicity may also include a system’s ability to
exchange certain (defective or obsolete) components without
changing the observable behavior. Dynamicity deals with
concerns like preserving states during functionality exchange,
starting and stopping functionality etc. The dynamicity aspect
of the running example manifests in the priority management,
which activates and exchanges network components.

Autonomy

As the term Autonomic Computing already suggests, au-
tonomy is one of the essential characteristics of such sys-
tems. AC aims at unburdening human administrators from
complex tasks, which typically requires a lot of decision
making without human intervention (and thus without direct
human interaction). Autonomy however is not only intelligent
behavior but also an organizational manner. Context adaptation
is not possible without a certain degree of autonomy. A rule
engine obeying a predefined set of conditional statements (e.g.
if_then_else) is the simplest form of autonomy. In many cases,
such a simple rule based mechanism however may not suffice.
The example scenario facilitates force feedback learning and
learning by observation to refine the decisions concerning the
priority of services and their granted QoS, respectively.

Robustness

Robustness is a requirement that is claimed for almost every
system. AC application will specially benefit from robustness
since this may facilitate the design of system parts that deal
with self-healing and self-defense. In addition the system
architecture could ease the appliance of measures in cases
of errors and attacks. Robustness states the first and most
obvious step on the road to dependable systems. Beside a
special focus on error avoidance, several requirements aiming
at correcting errors are forced. Robustness is often achieved
by decoupling and asynchronous communication. Both are
approved techniques in software and systems engineering,
which help in preventing from error propagation.

107

Mobility

Mobility enfolds all parts of the system: from mobility of
code on the lowest granularity level via mobility of services or
components up to mobility of devices or even mobility of the
overall system [8], [9]. Mobility enables dynamical discovery
and usage of new resources, recovery of crucial functionalities
etc. Often mobile devices are used for detection and analysis of
problems. In the running example, mobility of code is used to
transfer some functionalities relevant for security recordings,
from the outsourced security central to a local resource, in
order to save bandwidth and to facilitate temporally local
recordings.

Traceability

Traceability enables the unambiguous mapping of the log-
ical onto the physical system architecture, which inter alia
facilitates an easy deployment of necessary measures [8]. The
notion of traceability is once more closely related to that
of adaptation: adaptation decisions namely also base on an
abstract system model in order to reduce the necessary compu-
tational power. These decisions are afterwards deployed in the
physical system, too. The deployment is usually automatic, and
thus requires traceability. Traceability is additionally helpful
when analyzing the reasons for wrong decisions made by the
system. Traceability aspects are for instance concerned within
the running example, whenever a certain decision pertaining
the presence or availability of a service is specified on an
abstract level (e.g. in an abstract policy), and this very decision
can be mapped onto a command implementing this decision,
e.g. by (de-)activating or exchanging the corresponding ser-
vice.

IV. EVALUATION OF ARCHITECTURAL FRAMEWORKS

There is a number of architectural styles and frameworks
that already support at least some of the above mentioned
requirements for Autonomic Computing applications. In the
following, a brief characterization of currently available styles
and frameworks is given in order to enable a later mapping
onto the AC requirements. We evaluate the frameworks es-
pecially regarding their suitability to develop AC applications
exposing especially the self-healing characteristic. However,
the other self-X attributes are not fully ignored.

Accord Framework

The accord framework [10] was designed to cope with
three challenges: heterogeneity, dynamism and uncertainty. As
the inventors had a focus on grid environments, these three
problems are especially immanent. Therefore the framework
implements three requirements that aim at solving these prob-
lems:

1) separate interface definition

2) separate computational behavior from interaction and
coordination

3) computation, interaction and coordination should be
context aware to adapt them to “dynamic requirements”

1) and 2) are attributes of component and service based
architectures. 3) is introduced to cope with dynamism. Accord
does not explicitly include the application model into the
context. The accord framework can be classified as a managed
agent based architecture. Components act as agents but are
observed and managed by a controller. Replacing components
is quite complex, since components maintain a state, which
has to be migrated during the replacement.

Weaves Framework

In Weaves [11], messages are objects that are forwarded and
manipulated throughout the system. Weaves facilitates blind
communication: connectors and components are separated,
components do not know sources or destinations of objects
and neither their semantics. This ensures that components can
be replaced without rearranging connections and vice versa.
Weaves architectures can be edited on the fly. As weaves
uses asynchronous communication, typical problems arising
from connection loss that are problematic for synchronous
communication, are avoided.

C2 Framework

C2 [12] is another architectural style that focuses on a
hierarchical organization of components to enable decou-
pling. Components are connected via connectors and are only
aware of components that are above them. Therefore direct
invocation can only be made from the bottom to the top.
Communication is asynchronous and based on a request/reply
pattern. However state changes can be propagated via the
connectors top-down. Therefore components on a lower level
can be exchanged without causing problems on an upper level.

PitM Framework

PitM [13] is an extension of the C2 style aiming at
“Programming in the Many”. Inter-components connection
is extended in a way, that — in addition to top and bottom
connectors — side connectors enable synchronous component
interaction. As a constraint, two components may not be in a
side-to-side and top-down connection at the same time. This
restriction prevents from ports misuse. Behavior is described
by means of provided and required services and interaction via
event-based communication. Furthermore, special connectors
called border connectors abstract from distribution over de-
vices, since components may not see the device borders. PitM
has a second architecture level called meta-level. Components
on this level act as effectors that are aware of the application-
level components and may interact with them. This meta-
level controls the application behavior. Application data mes-
sages are used simply for application related communication,
whereas component content, architectural model and system
monitoring messages are used to coordinate adaptive features.

CAWAR Framework

The CAWAR framework [14] [15] [9] [3] differs from the
former described approaches in that it is a purely service based
approach. CAWAR distinguishes four basic service types:

108

sensors acquire data, interpreters process data and actuators
deploy instructions. Context elements are abstract and possi-
bly distributed information buffers, which decouple the other
three service types dealing with the data processing. Certain
constraints govern the possibilities for composition and ensure
unambiguous data processing. The usage of services abstracts
from implementation details and focuses on describing the
behavior of the specified system. All CAWAR architectures
are self-describing, i.e. the system model itself is part of
the system and stored in a dedicated context element. This
enables inferencing from the model. The CAWAR architecture
contains a special management service called model activator.
This service implements the adaptation decisions within the
system model, which may lead to a reconfiguration of the
system. Since the activator itself is part of this model, even
the activator may be affected by such an adaptation decisions
(total reconfigurability). The communication between context
elements and the other service types is synchronous, while
it is asynchronous in-between the three other types due to
the mentioned decoupling via context. Beside the service
communications, direct communications on the component
layer are also possible and can be negotiated via the context.
The context thus buffers information concerning the system
states!, the system model itself and the system environment.

Summary of the Evaluation

Each of the architectural styles described above supports a
subset of the former described requirements. All of them are
suitable for designing self-healing application, or more gener-
ally AC application with specified self-X attributes. However,
some architectural styles better support the design of certain
self-X requirements than others. Table I summarizes the evalu-
ation results, whereas “o” means the architecture style does not
explicitly support the requirement; however it does not avoid
its fulfillment in principle. “+” means the architecture style
somehow supports the requirement, while “++” expresses,
that the corresponding requirement is highly supported by the
architecture. As mentioned in the introduction, we focus our
considerations on the self-healing attribute, although support
of the further attributes may be straightforward.

Accord | Weaves | C2 | PitM | CAWAR

Adaptability | + o) ++ ++
Awareness + + + + ++
Monitoring + o o ++ ++
Dynamicity + + + + ++
Autonomy + + + + +

Robustness + + + + +

Mobility o + + ++ ++
Traceability o o o + ++

TABLE I

EVALUATION OF DIFFERENT ARCHITECTURE STYLES

We consider both PitM and CAWAR as promising ap-
proaches for equipping system with self-X characteristics,
since they support the design of context adaptive systems. C2

Ithe involved services are usually stateless.

and Weaves state first attempts in supporting more flexible
system designs. Accord has a slightly different focus, since
it is designed for grid environments, where context is usually
limited to indicate the availability of certain resources within
the computer grid.

Both PitM and CAWAR support all requirements for Au-
tonomic Computing. However, autonomy for any style and
framework is highly dependent on the applied techniques
for decision making. CAWAR provides a more sophisti-
cated awareness concept than PitM, since CAWAR architec-
tures dictate an explicit model of the system environment
in form of context. Moreover, CAWAR inherently supports
self-awareness of the system model for inference purposes,
whereas PitM merely considers awareness of application re-
lated aspects; adaptation related aspects of the system are not
taken into account. CAWAR explicitly integrates adaptation
and application aspects: the context adaptive system behavior
is specified by only four service types, thus enabling a com-
fortable design of system architectures. Thanks to management
services like the model activator, this architecture can be
discovered, deployed and reconfigured at runtime.

V. QUALITY OF SERVICE IN AUTONOMIC COMPUTING

An objective of the self-healing paradigm of AC is to
support an continuous maintenance of crucial system func-
tionality. In several systems certain system functions are
less important than others. Since resources are typically
very limited (e.g. due to failures), a compromise between
function availability/service provisioning and the quality of
the corresponding service is necessary. Crucial services are
consequently maintained, while less important services suffer
from quality reductions or deactivations.

In terms of our hospital scenario this means the follow-
ing: due to a failure in a network component, the available
bandwidth is restricted. When a remote expert for assisting
a surgery is requested (crucial service), the quality of less
important active services (e.g. video security) is automatically
reduced. This requires a mechanism capable of changing both
the required quality of a service and the offered quality of
a component (e.g. network bandwidth). Another illustrative
example is the selection of an appropriate sorting algorithm:
commonly a fast algorithm like “MergeSort” (or an equivalent)
is deployed for solving a given sorting problem. Suddenly a
failure occurs, which heavily restricts the memory resources.
As a self-healing measure, the system exchanges the fast
but memory greedy algorithm for a slower algorithm like
“BubbleSort”, which however merely requires linear memory
space. With this scenario in mind, we introduce the concept
of Dynamic Quality of Service (Dynamic QoS).

A. Basis of Dynamic QoS Modeling

If systems should expose Dynamic QoS characteristics, it is
crucial to enable decision-making concerning the QoS aspects.
The technical details of this decision-making are out of the
scope of this document. However, it should be mentioned, that
fuzzy decision-making algorithms like Bayesian networks or

109

neural networks may often facilitate the design of the required
decision logic.

As common to service based approaches, a service model
(S-Model) represents a management layer on which such
decisions can be made?. We will therefore adhere to the S-
Model notion as supported for instance by both the PitM
and CAWAR architecture [13] [14]. However, any model
that allows for a dynamic exchange of services and service-
fulfilling components can be used — as long as the system has
the ability to access its own model.

Changing the QoS of a given service can be understood
as a substitution of services. The process for changing the
QoS of services is therefore very similar to that of any
other reconfiguration: once the system model is adapted (e.g.
modify QoS of some service), an adequate component offering
the desired functionality with the specified QoS is searched.
The searched component need not inevitably be a different
component. If the old component is able to offer the new
QoS, it remains a candidate for the service provisioning.
However, describing the QoS change via a reconfiguration
allows for using QoS beyond the capabilities of the former
used component. A detailed explanation will follow after the
general mechanism for changing QoS is introduced.

For enabling a system to change QoS aspects via the
adaptation mechanism, the system must be self-aware, i.e. it
must access a representation of its own model description. The
QoS parameters are usually specified within this system model.
Hence, an obsolete service description within the model is
substituted for a new description containing the desired QoS
parameters. When the changed model description is deployed
by some management service, the system is reconfigured
to contain an adequate component for the changed service
description.

Technically, the reconfiguration could be realized as follows:
the decision-making entity computes a new system model
(with appropriate QoS) by using any relevant information
available as context — in particular the current system model.
The changed system model is read by the entity that imple-
ments the system model at runtime, i.e. by the model activator.
The model activator notices all changes within the system
model. It tries to discover appropriate components, that fulfill
the service policies within the model description — including
the corresponding QoS parameters. Sophisticated components
may also expose several QoS levels (e.g. low, average, high).
As soon as all necessary components are discovered, the
activator binds each service contained in the system model to
the component fulfilling the specified service with the desired
QoS.

The described process looks quite complex for reconfiguring
a single service-fulfilling component in order to offer another
QoS. However, we prefer this mechanism instead of just
sending a configuration message to the concerned component
for the following reason: the described mechanism works
for all kinds of components. Simple components exposing at

2and in fact, it also models the information these decisions are based on.

most one QoS level as well as components offering multiple
QoS levels can be reconfigured by that mechanism. The
decision-making procedure thereby also considers information
concerning the runtime detection of components and other
available resources. Finally, the whole decision process re-
mains reconfigurable itself.

B. Application of Dynamic QoS for the Hospital Scenario

We now illustrate the reconfiguration mechanism described
in the previous section by means of our running example. We
consider a scenario, in which QoS parameters of certain video
security services are reduced and IPTV is deactivated. These
reconfigurations are necessary in order to provide the required
network bandwidth for an important incoming video service
(e.g. remote expert). We will use the graphical notation of
CAWAR for representing the considered system model.

In the initial service model (fig. 1), the occurrence of a
failure in the network is recognized by a dedicated sensor
called NetworkBlackoutSensor. The information concerning
this failure is stored within the system context. The interpreter
NetworkSwitchController decides on basis of this context, that
the Broadband Network (component), currently fulfilling the
Network service, must be replaced by a SDSL network (com-
ponent). As a result, the initial system model is adapted: the
model description specifying the Network service is adjusted
to reflect the changed bandwidth restrictions (depicted by a
dashed line in figure 1). In the simplest case a reference is
added to the service description of Network, which indicates
the new component fulfilling this service, i.e. the SDSL
network. The Model Activator (not shown in the figure) reads
and implements the modified model description by binding all
specified services to available components (reconfiguration).

In the mean time the NetworkScheduler and its predecessors
are activated by the same reconfiguration (not depicted). Now
the AvailableBandwidthSensor senses the available bandwidth
(further sensors for priority requests etc. are omitted). The
NetworkScheduler modifies the model description for the
different video services by adjusting their QoS parameters
or even ordering their deactivation to release the allocated
network bandwidth for the important video service.

Although a change of QoS does facilitate the same mecha-
nisms there is a slight difference. We do not provide a distinct
service model for each possible QoS assignment, and we also
do not assume a calculus for model alteration. We merely re-
quire the decision-making interpreter (e.g. NetworkScheduler)
to know the exact peculiarity of the QoS parameters of the
affected service (e.g. runtime, fidelity etc.).

Within our scenario setting, we assume that a remote expert
is requested. Therefore the quality of the video security
shall be reduced. It may not be deactivated due to legal
constraints (e.g. observation of rooms where medicines are
stored) but a change from a 1024x768 resolution with 25 fps
to a 640x400 resolution with 15 fps would release enough
network bandwidth for the remote expert video service. The
reduced resolution suffice to recognize unauthorized persons

110

Network
Blackout,

enso)

IP-TV

Context

Context

Available

Network

Metwol
Switch

Context

Patient
Disply

‘Guards
Display

Context

Fig. 1.

and to trigger countermeasures, although a precise identifica-
tion may not be possible. The changed QoS in the service
model is interpreted by the model activator and finally results
in changed service-component bindings. Assuming that the
security-camera offers different image resolutions, it is bound
and configured accordingly by the model activator.

VI. CONCLUSION AND OUTLOOK

We presented a survey of existing work on context adapta-
tion within the domain of Autonomic Computing. We analyzed
the requirements for context adaptation in AC and evaluated
some approaches concerning these requirements. It turned
out, that a couple of approaches already fulfill many of
these requirements satisfactorily. We illustrated how adaptation
can be used to enrich the fulfillment of the self-healing
requirement. Dynamic QoS has been used to facilitate graceful
degradation and the optimal sharing of resources, respectively.
The concepts were demonstrated using a hospital scenario, in
which several video services were considered.

We recommend context adaptation as a promising approach
for realizing the visions of AC, including the support of
all self-X attributes. While several ongoing work attempts
to address some of the AC paradigms (self-healing, self-
organization, self-optimization and self-protection), there has
been little work on an integrated approach that takes the
entire development process into account. Software engineering
constitutes a holistic approach for developing systems that
fulfill their requirements. But there is no conclusive modus
operandi for developing neither context-aware systems, nor
Autonomic Computing systems by now. Thus, further effort
is directed towards the elaboration of a continuous approach
for developing such systems.

REFERENCES

[1] J. O. Kephart, “Research challenges of autonomic computing,” in /CSE
’05: Proceedings of the 27th international conference on Software
engineering. New York, NY, USA: ACM, 2005, pp. 15-22.

[2] D. M. Berry, B. H. Cheng, and J. Zhang, “The Four Levels of
Requirements Engineering for and in Dynamic Adaptive Systems,” in
Proceedings of 11th International Workshop on Requirements Engineer-
ing: Foundation for Software Quality, 2005.

111

31

[4

=

(51

(7

—

[8

=

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

System model used for demonstrating dynamic QoS

M. Fahrmair, W. Sitou, and B. Spanfelner, “An engineering approach to
adaptation and calibration,” in Modeling and Retrieval of Context MRC
2005, ser. Springer LNCS, no. 3946, 2006.

W. Sitou and B. Spanfelner, “Towards requirements engineering for con-
text adaptive systems.” in Proceedings of the 31st Annual International
Computer Software and Applications Conference (COMPSAC 2007),
vol. 2. Beijing, China: IEEE Computer Society, 2007, pp. 593-600.
A. K. Dey, “Providing architectural support for building context-aware
applications,” Ph.D. dissertation, College of Computing, Georgia Insti-
tute of Technology, 2000, director-Gregory D. Abowd.

H. Lieberman and T. Selker, “Out of context: computer systems that
adapt to, and learn from, context,” IBM Systems Journal, vol. 39, no.
3-4, pp. 617-632, 2000.

D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft, “Recovery oriented
computing (roc): Motivation, definition, techniques,,” Berkeley, CA,
USA, Tech. Rep., 2002.

M. Mikic-Rakic, N. Mehta, and N. Medvidovic, “Architectural style
requirements for self-healing systems,” in WOSS’02: Proceedings
of the first workshop on Self-healing systems. New York,
NY, USA: ACM Press, 2002, pp. 49-54. [Online]. Available:
http://portal.acm.org/citation.cfm?id=582138

M. Fahrmair, “Kalibrierbare kontextadaption fiir ubiquitous computing,”
Ph.D. dissertation, Fakultit fiir Informatik, TU-Miinchen, 2005.

M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt,
G. Zhang, L. Zhen, M. Parashar, B. Khargharia, and S. Hariri, “Au-
toMate: Enabling Autonomic Applications on the Grid,” in Autonomic
Computing Workshop. 1EEE Computer Society, 2003, pp. 48-57.

M. M. Gorlick and R. R. Razouk, “Using weaves for software construc-
tion and analysis,” in ICSE ’91: Proceedings of the 13th international
conference on Software engineering. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1991, pp. 23-34.

R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. W. Jr., J. E. Robbins,
K. A. Nies, P. Oreizy, and D. L. Dubrow, “A component- and message-
based architectural style for GUI software,” Software Engineering,
vol. 22, no. 6, pp. 390-406, 1996.

N. Medvidovic and M. Mikic-Rakic, “Architectural support for
programming-in-the-many,” TR USC-CSE-2001-506, Tech. Rep., 2001.
E. Mohyeldin, M. Fahrmair, W. Sitou, and B. Spanfelner, “A Generic
Framework for Context Aware and Adaptation Behaviour of Reconfig-
urable Systems,” in Proceedings of the 16th Annual IEEE International
Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC’05), 2005.

E. Mohyeldin, M. Dillinger, M. Fahrmair, W. Sitou, and P. Dornbusch,
“A Generic Framework for Negotiations and Trading in Context Aware
Radio,” in Software Defined Radio Technical Conference, Phoenix
Arizona USA, November, 2004.

